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Financial markets show notable fractal patterns, with clusters of activity and sudden 
large movements in price

Scale Invariance in Financial Markets



Statistical facts summarized by Cont (2001):
- Absence of autocorrelation in return
- Heavy tails (conditional and unconditional)
- Aggregational Gaussianity
- Intermittency
- Volatility clustering
- Slow decay of autocorrelation in absolute returns

- Gain/loss asymmetry
- Leverage effect
- Volume/volatility correlation
- Asymmetry in time scales

The Stylised Statistical Properties of Financial Markets



Statistical models:
- GARCH-type models [Bollerslev et al., 1992; Engle, 1995; Ding, Granger et al., 1993]
- Fractal Brownian model (i.e., self-similar process) [Mandelbrot & Van Ness, 1968]

“Statistical analysis alone is not likely to provide a definite answer for empirical phenomena in 
financial market, unless economic mechanisms are proposed to understand the origin of such 
phenomena”
Cont (2007)

Proposed economic mechanisms:
- Efficient market (random walk) hypothesis [Bachelier, 1900; Samuleson, 1965; Fama, 1970]
- Behavioural switching models [Kirman, 1993; Lux & Marchesi, 2000]
- Investor inertia to news [Cont et al., 2004]

Psychological roles in economics:
- Whether price variations reflect cognitive fluctuations in beliefs? 

The Origins of Statistical Properties of Financial Markets



Can you detect the financial time series?

Bitcoin/USD 
exchange rate

Tapping task



Congruent properties of financial time series and tapping task
[1] Absence of autocorrelation in asset returns 

Bitcoin/USD Exchange Rate Tapping task



Kurtosis: Model-free Estimation of Tailedness



Congruent properties of financial time series and tapping task
[2] Unconditional heavy tails
[4] Aggregational Gaussianity

Bitcoin/USD Exchange Rate Tapping task



Congruent properties of financial time series and tapping task
[6] Volatility clustering
[8] Slow decay of autocorrelation in absolute returns

Bitcoin/USD Exchange Rate Tapping task

Slope = -0.6626 Slope = -0.6552
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Congruent properties of financial time series and tapping task
[5] Intermittency
[6] Volatility clustering

Bitcoin/USD Exchange Rate Tapping task

GARCH(1) = 0.8191 (p<0.0001) GARCH(1) = 0.6026 (p<0.0001)
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Congruent properties of financial time series and tapping task
[7] Conditional heavy tails

Bitcoin/USD Exchange Rate Tapping task



Comparing Individual Decisions and Market Movements
• Individual decisions in a simple time estimation task bear a striking resemblance to 

financial market movements

• We therefore want to investigate whether these behaviours may share a common 
origin in decision making

• Sample-based approximation to Bayesian inference (e.g., rational expectation)

• Here, we focus on one algorithm in particular which has been successful in 
explaining the previously shown tapping data: Metropolis-Coupled Markov Chain 
Monte Carlo (MC3)



running M Markov chains in parallel, each at a different temperature: T1, T2, ..., TM . In general,120

1 = T1 < T2 < ... < TM , and T1 is the temperature of the interest where the target distribution is121

unchanged. The purpose of the heated chains is to traverse valleys in the probability landscape to122

propose moves to far-away peaks (by sampling from heated target distributions: ⇡1/T ), while the123

colder chains make the local steps that explore the current probability peak or patch. MC3 decides124

whether to swap the states between two randomly chosen chains in every iteration [10]. In particular,125

swapping of chain i and j is accepted or rejected according to a Metropolis rule; hence, the name126

Metropolis-coupled MCMC127

Aswap = min{1,
⇡(xj)1/Ti⇡(xi)1/Tj

⇡(xi)1/Ti⇡(xj)1/Tj
} (4)

Coupling induces dependence among the chains, so each chain is no longer Markovian. The stationary128

distribution of the entire set of chains is thus
QM

i=1 ⇡
1/Ti but we only use samples from the cold129

chain (T = 1) to approximate the posterior distribution [10]. Pseudocode for MC3 is presented below.130

Note that MC3 reduces to RwM when the number of parallel chains M = 1.131

132
Algorithm Metropolis-coupled Markov chain Monte Carlo
1: Choose a starting point x1.
2: for t = 2 to L do
3: for m = 1 to M do B update all M chains
4: Draw a candidate sample x0

⇠ N (xm
t�1,�) B Gaussian proposal distribution

5: Sample u ⇠ U [0, 1]

6: Am = min{1, [ ⇡(x0)
⇡(xm

t�1)
]1/Tm}

7: if u < Am then xm
t = x0 else xm

t = xm
t�1 end if B Metropolis acceptance rule

8: end for
9: repeat floor(M/2) times B swapping scheme for Markov chains

10: Randomly select two chain i, j without repetition
11: Sample u ⇠ U [0, 1]

12: Aswap = min{1, ⇡(xj
t)

1/Ti⇡(xi
t)

1/Tj

⇡(xi
t)

1/Ti⇡(xj
t)

1/Tj
}

13: if u < Aswap then swap(xi
t, x

j
t ) end if B Metropolis-coupled swapping rule

14: end repeat
15: end for

133

3 Results134

In this section, we evaluate whether the two key empirical effects of Lévy flights and 1/f auto-135

correlations can be produced by the Direct Sampling (DS), Random walk Metropolis (RwM), and136

Metropolis-coupled MCMC (MC3) algorithms.137

3.1 Lévy flight138

We simulated a 2D patchy environment with Nmode = 15 Gaussian mixtures where the means are139

uniformly generated from [�r, r] for both dimensions, where r = 9 and the covariance matrix is140

fixed as the identity matrix for all mixtures. This method will produce a patchy environment (for141

example the top panel of Figure 1). We ran DS, RwM, and MC3 on this multimodal probability142

landscape, and the first 100 positions for each algorithm can be found in the top panel of Figure143

1. The empirical flight distances were obtained by calculating the Euclidean distance between two144

consecutive positions of the sampler. For MC3, only the positions of the cold chain (T = 1) were145

used.146

Power-law distributions should produce straight lines in a log-log plot. Therefore, the power-law147

exponents were fitted by linear regression on the window-averaged log-binned flight distance data [23].148

We used 10 non-overlapping windows that evenly split the x-axis, and cell means are represented in149

the yellow filled dots in the bottom panel of Figure 1. Fitting the cell means provides a lower-variance150

method for estimating the slope than fitting the log-binned data directly. Figure 1 (bottom panel)151

4

Geyer (1991); Neal (1996)

aka parallel tempering, replica-exchange MCMC

Metropolis-coupled Markov Chain Monte Carlo (MC3)



[6 parallel chains (only the cold chain is shown here)]

Metropolis-coupled Markov Chain Monte Carlo (MC3)

Zhu, Sanborn, & Chater (2018)



Bitcoin/USD 
exchange rate

MC3 sampler

Congruent properties of financial time series and MC3 sampler



Bitcoin/USD Exchange Rate MC3 sample

Congruent properties of financial time series and MC3 sampler
[1] Absence of autocorrelation in asset returns 



Bitcoin/USD Exchange Rate MC3 sample

Congruent properties of financial time series and MC3 sampler
[2] Unconditional heavy tails
[4] Aggregational Gaussianity



Bitcoin/USD Exchange Rate

Slope = -0.6626

MC3 sample

Slope = -0.4687

Congruent properties of financial time series and MC3 sampler
[6] Volatility clustering
[8] Slow decay of autocorrelation in absolute returns



Bitcoin/USD Exchange Rate

GARCH(1) = 0.8191 (p<0.0001)

MC3 sample

GARCH(1) = 0.4650 (p<0.0001)

Congruent properties of financial time series and MC3 sampler
[5] Intermittency
[6] Volatility clustering
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Bitcoin/USD Exchange Rate MC3 sample

Congruent properties of financial time series and MC3 sampler
[7] Conditional heavy tails



De Long, Shleifer, Summers, & Waldmann (1990)

• To provide market mechanisms, we drew on the model of De Long et al. (1990), 
where noise traders include a systematic bias sampled from a normal distribution:

⇢t ⇠ N (⇢⇤,�2
⇢)

• We can then replace this IID sampler with the MC3 algorithm to create a new 
market model.

• Market Mechanisms:
1. Two-period model (invest young, consume old)
2. CARA utility function for both traders:
3. Risk-free asset: return r, infinite supply
4. Risky asset: dividend r, supply = 1
5. noise traders,            rational tradersµ 1� µ

U(w) = �e�2�w

Adding Market Mechanisms



De Long, Shleifer, Summers, & Waldmann (1990)

• Using the Pricing function from the original De Long model (with market clearing & 
steady-state assumption), price becomes a linear function of the sample:

- Predicted price movements from the edited model therefore match with the movements of the 
MC3 algorithm, showing the same behaviours described previously.

- This does allow us to explore other market behaviours, however, such as volume of trading

• This does however assume that all noise traders hold the same belief, which may 
not be plausible in a real market

- We therefore decided to expand the model by dividing noise traders into subgroups with 
individual beliefs taken from separate samples

Pt = 1 +
µ(⇢t � ⇢⇤)

1 + r
+

µ⇢⇤

r
� 2�

r
(

µ

1 + r
)2�2

⇢

Adding Market Mechanisms



• Noise traders were further divided into a set of subgroups with proportions 
- Each subgroup then generates its own sample         using MC3, and the aggregate across these 

samples is used to generate the price:

• Under equal proportions, price essentially averages across samples, so many of the 
previously described behaviours are lost

Pt = 1 +
µ(⇢t � ⇢⇤)

1 + r
+

µ⇢⇤

r
� 2�

r
(

µ

1 + r
)2�2

⇢

Adding Market Mechanisms

• If we instead assume that some beliefs are more 
common than others, the some samples can 
dominate market movements

- We can represent this using a power law across subgroup 
proportions, based on similar patterns in scale-free 
networks



Bitcoin/USD 
exchange rate

MC3 + noise 
trader model

Congruent properties of financial time series and MC3 market model
[1] Absence of autocorrelation in asset returns 



Bitcoin/USD Exchange Rate Noise trader model + MC3

Congruent properties of financial time series and MC3 market model
[1] Absence of autocorrelation in asset returns 



Bitcoin/USD Exchange Rate Noise trader model + MC3

Congruent properties of financial time series and MC3 market model
[2] Unconditional heavy tails
[4] Aggregational Gaussianity



Bitcoin/USD Exchange Rate

Slope = -0.6626 Slope = -0.6119

Noise trader model + MC3

Congruent properties of financial time series and MC3 market model
[6] Volatility clustering
[8] Slow decay of autocorrelation in absolute returns



Bitcoin/USD Exchange Rate

GARCH(1) = 0.8191 (p<0.0001) GARCH(1) = 0.6322 (p<0.0001)

Noise trader model + MC3

Congruent properties of financial time series and MC3 market model
[5] Intermittency
[6] Volatility clustering
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Bitcoin/USD Exchange Rate Noise trader model + MC3

Congruent properties of financial time series and MC3 market model
[7] Conditional heavy tails



Noise trader model + MC3

Congruent properties of financial time series and MC3 market model
[10] Volume/Volatility Correlation

r = 0.256

• The De Long model provides an analogue for 
trading volume in the demands of its two 
trader types

- Traders seek to purchase an amount of the asset 
which maximises their utility given their beliefs

- By summing the absolute value of these 
demands, weighted by their proportion in the 
population, we can compare trading volume 
against volatility

- This shows a moderate positive correlation, 
meeting the criterion of Cont (2001)



• While the MC3 noise trader model does match with many of the behaviours of 
financial markets, there are others which are not possible in our current 
framework:
• Gain/loss asymmetry – Markets display bigger drawdowns than upwards movements

• Our model allows for extreme movements in both directions
• Leverage effect – Falls in return are correlated with increases in volatility at short time 

lags
• This may require some measure of ‘panic’ from falling prices

• Scale asymmetry – Coarse-grained measures of volatility predict fine-grained scales 
better than fine predict coarse
• Our model includes no direction of time, so predictions are symmetrical

• Additional psychological mechanisms could be added to the model to capture 
these behaviours e.g. loss aversion

Model Limitations



• The movements of financial markets bear a strong resemblance to individual 
decisions

• Sampling algorithms such as MC3 are able to capture many of these behaviours 
at both an individual and market level

• By combining such sampling methods with existing financial theories, we have 
developed a model which accurately predicts many of the complex behaviours 
of financial markets

• But there is still room for expansion

Thank you

Summary


