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Scale Invariance in Financial Markets
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Financial markets show notable fractal patterns, with clusters of activity and sudden
large movements in price
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The Stylised Statistical Properties of Financial Markets WARWICK

Statistical facts summarized by Cont (2001):
Absence of autocorrelation in return

Heavy tails (conditional and unconditional)
Aggregational Gaussianity

Intermittency

Volatility clustering

Slow decay of autocorrelation in absolute returns
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The Origins of Statistical Properties of Financial Markets WARWICK

Statistical models:

-  GARCH-type models [Bollerslev et al., 1992; Engle, 1995; Ding, Granger et al., 1993]
- Fractal Brownian model (i.e., self-similar process) [Mandelbrot & Van Ness, 1968]

“Statistical analysis alone is not likely to provide a definite answer for empirical phenomena in

financial market, unless economic mechanisms are proposed to understand the origin of such
phenomena”

Cont (2007)

Proposed economic mechanisms:

- Efficient market (random walk) hypothesis [Bachelier, 1900; Samuleson, 1965; Fama, 1970]
- Behavioural switching models [Kirman, 1993; Lux & Marchesi, 2000]
- Investor inertia to news [Cont et al., 2004]

Psychological roles in economics:
- Whether price variations reflect cognitive fluctuations in beliefs?



vy

Can you detect the financial time series? WARWICK
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Congruent properties of financial time series and tapping task

[1] Absence of autocorrelation in asset returns
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Kurtosis: Model-free Estimation of Tailedness
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Congruent properties of financial time series and tapping task

[2] Unconditional heavy tails
[4] Aggregational Gaussianity

Kurtosis
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Congruent properties of financial time series and tapping task
[6] Volatility clustering

[8] Slow decay of autocorrelation in absolute returns
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Congruent properties of financial time series and tapping task A

[5] Intermittency
[6] Volatility clustering
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Congruent properties of financial time series and tapping task va'va'| i
[7] Conditional heavy tails
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Comparing Individual Decisions and Market Movements WARWICK

Individual decisions in a simple time estimation task bear a striking resemblance to
financial market movements

We therefore want to investigate whether these behaviours may share a common
origin in decision making

Sample-based approximation to Bayesian inference (e.g., rational expectation)

Here, we focus on one algorithm in particular which has been successful in

explaining the previously shown tapping data: Metropolis-Coupled Markov Chain
Monte Carlo (MC3)
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Metropolis-coupled Markov Chain Monte Carlo (MC3) WARWICK

aka parallel tempering, replica-exchange MCMC

Algorithm Metropolis-coupled Markov chain Monte Carlo

1:  Choose a starting point .

2: fort=2toLdo
3 for m = 1to M do
4: Draw a candidate sample 2’ ~ N (z}", o)
5: Sample u ~ U[0, 1]
6: A™ = min{1, [/ T
7 if u < A™ then z}* = 2’ else x}" = z}" | end if
8: end for
9: repeat floor(1//2) times
10: Randomly select two chain 7, 7 without repetition
11: Sample u ~ U[0, 1]
. (2 Tig () Tj
B der S
13: if u < A" then swap(a:f;, x]) end if
14: end repeat
15:  end for

> update all M chains
> Gaussian proposal distribution

> Metropolis acceptance rule

> swapping scheme for Markov chains

> Metropolis-coupled swapping rule

Monte Carlo Step

Geyer (1991); Neal (1996)
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Metropolis-coupled Markov Chain Monte Carlo (MC3) WARWICK

[6 parallel chains (only the cold chain is shown here)]

Zhu, Sanborn, & Chater (2018)
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Congruent properties of financial time series and MC3 sampler

[1] Absence of autocorrelation in asset returns
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Congruent properties of financial time series and MC3 sampler A
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[2] Unconditional heavy tails THEUNVERSITY OF WARWICK
[4] Aggregational Gaussianity
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Congruent properties of financial time series and MC3 sampler A
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[6] Volatlllty Clusterlng THE UNIVERSITY OF WARWICK
[8] Slow decay of autocorrelation in absolute returns

Bitcoin/USD Exchange Rate MC3 sample
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Congruent properties of financial time series and MC3 sampler WA'RW'ICK

[5] I nte rm itte n Cy THE UNIVERSITY OF WARWICK
[6] Volatility clustering

Bitcoin/USD Exchange Rate MC3 sample
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Congruent properties of financial time series and MC3 sampler WA'RW'ICK
[7] Conditional heavy tails

EEEEEEEEE SITY OF WARWICK
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Adding Market Mechanisms WARWICK

To provide market mechanisms, we drew on the model of De Long et al. (1990),
where noise traders include a systematic bias sampled from a normal distribution:

Pt ~ N(p*a O-g)

Market Mechanisms:

Two-period model (invest young, consume old)

CARA utility function for both traders: U (w) = —e 2w
Risk-free asset: return r, infinite supply

Risky asset: dividend r, supply =1

1 noise traders, 1 — prational traders

Lk o e

We can then replace this IID sampler with the MC3 algorithm to create a new
market model.

De Long, Shleifer, Summers, & Waldmann (1990)



vy

Adding Market Mechanisms WARWICK

* Using the Pricing function from the original De Long model (with market clearing &
steady-state assumption), price becomes a linear function of the sample:

L >k k 2
p(pt p)+£_ V(M 202

P=1
t + 1+7r r r 1+r

- Predicted price movements from the edited model therefore match with the movements of the
MC3 algorithm, showing the same behaviours described previously.
- This does allow us to explore other market behaviours, however, such as volume of trading

* This does however assume that all noise traders hold the same belief, which may

not be plausible in a real market
- We therefore decided to expand the model by dividing noise traders into subgroups with
individual beliefs taken from separate samples

De Long, Shleifer, Summers, & Waldmann (1990)
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Adding Market Mechanisms WARWICK

Noise traders were further divided into a set of subgroups 7 with proportions [t
- Each subgroup then generates its own sample py)using MC3, and the aggregate across these
samples is used to generate the price:

.y — 9
oy ikl = 7)ot VM

P
147 r r 1+r

)"0,

Under equal proportions, price essentially averages across samples, so many of the
previously described behaviours are lost

If we instead assume that some beliefs are more _ 01
(@)
common than others, the some samples can =
. o
dominate market movements <

We can represent this using a power law across subgroup
proportions, based on similar patterns in scale-free
networks

1234567 8 910
Subgroup



Congruent properties of financial time series and MC3 market model VYCK
[1] Absence of autocorrelation in asset returns e

|

|

Bitcoin/USD

exchange rate %, W‘M)iﬂvWMWWMMWWWW\MWW”WMMW%

—

WMWMW

e i ?“”MNWW“WHWWW "




Congruent properties of financial time series and MC3 market model

[1] Absence of autocorrelation in asset returns
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Congruent properties of financial time series and MC3 market model VY
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[2] Unconditional heavy tails THEUNVERSITY OF WARWICK
[4] Aggregational Gaussianity

Bitcoin/USD Exchange Rate Noise trader model + MC3
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Congruent properties of financial time series and MC3 market model VY

- . WARWICK
[6] Volatlllty Clusterlng THE UNIVERSITY OF WARWICK
[8] Slow decay of autocorrelation in absolute returns

Bitcoin/USD Exchange Rate Noise trader model + MC3
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Congruent properties of financial time series and MC3 market model WA'RW'ICK

[5] I nte rm itte n Cy THE UNIVERSITY OF WARWICK
[6] Volatility clustering

Bitcoin/USD Exchange Rate Noise trader model + MC3
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Congruent properties of financial time series and MC3 market model va'va'| -
[7] Conditional heavy tails
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Congruent properties of financial time series and MC3 market model A

[10] Volume/Volatility Correlation

 The De Long model provides an analogue for
trading volume in the demands of its two
trader types
- Traders seek to purchase an amount of the asset
which maximises their utility given their beliefs

- By summing the absolute value of these
demands, weighted by their proportion in the
population, we can compare trading volume
against volatility
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- This shows a moderate positive correlation,
meeting the criterion of Cont (2001)
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Model Limitations WARWICK

* While the MC3 noise trader model does match with many of the behaviours of
financial markets, there are others which are not possible in our current
framework:

* Gain/loss asymmetry — Markets display bigger drawdowns than upwards movements
e Our model allows for extreme movements in both directions

* Leverage effect — Falls in return are correlated with increases in volatility at short time
lags
* This may require some measure of ‘panic’ from falling prices

* Scale asymmetry — Coarse-grained measures of volatility predict fine-grained scales
better than fine predict coarse

* Our model includes no direction of time, so predictions are symmetrical

* Additional psychological mechanisms could be added to the model to capture
these behaviours e.g. loss aversion
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Summary WARWICK

* The movements of financial markets bear a strong resemblance to individual
decisions

« Sampling algorithms such as MC3 are able to capture many of these behaviours
at both an individual and market level

* By combining such sampling methods with existing financial theories, we have

developed a model which accurately predicts many of the complex behaviours
of financial markets

e But there is still room for expansion

Thank you



